Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(9): e0257615, 2021.
Article in English | MEDLINE | ID: covidwho-1435618

ABSTRACT

The World Health Organization (WHO) calls for the development of a rapid, biomarker-based, non-sputum test capable of detecting all forms of tuberculosis (TB) at the point-of-care to enable immediate treatment initiation. Lipoarabinomannan (LAM) is the only WHO-endorsed TB biomarker that can be detected in urine, an easily collected sample matrix. For obtaining optimal sensitivity, we and others have shown that some form of sample pretreatment is necessary to remove background from patient urine samples. A number of systems are paper-based often destined for resource limited settings. Our current work presents incorporation of one such sample pretreatment, proteinase K (ProK) immobilized on paper (IPK) and test its performance in comparison to standard proteinase K (SPK) treatment that involves addition and deactivation at high temperature prior to performing a capture ELISA. Herein, a simple and economical method was developed for using ProK immobilized strips to pretreat urine samples. Simplification and cost reduction of the proposed pretreatment strip were achieved by using Whatman no.1 paper and by minimizing the concentration of ProK (an expensive but necessary reagent) used to pretreat the clinical samples prior to ELISA. To test the applicability of IPK, capture ELISA was carried out on either LAM-spiked urine or the clinical samples after pretreatment with ProK at 400 µg/mL for 30 minutes at room temperature. The optimal conditions and stability of the IPK were tested and validation was performed on a set of 25 previously analyzed archived clinical urine samples with known TB and HIV status. The results of IPK and SPK treated samples were in agreement showing that the urine LAM test currently under development has the potential to reach adult and pediatric patients regardless of HIV status or site of infection, and to facilitate global TB control to improve assay performance and ultimately treatment outcomes.


Subject(s)
Biomarkers/urine , Endopeptidase K/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Tuberculosis/diagnosis , Endopeptidase K/chemistry , Enzyme-Linked Immunosorbent Assay/instrumentation , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Lipopolysaccharides/urine , Paper , Temperature
2.
Clin Chem ; 67(2): 415-424, 2021 01 30.
Article in English | MEDLINE | ID: covidwho-887266

ABSTRACT

BACKGROUND: Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. METHODS: To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. RESULTS: The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44-104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. CONCLUSIONS: Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Saliva/virology , COVID-19/epidemiology , Colorimetry/methods , Endopeptidase K/chemistry , Humans , Limit of Detection , Pandemics , Point-of-Care Testing , SARS-CoV-2/chemistry
3.
J Virol Methods ; 286: 113965, 2020 12.
Article in English | MEDLINE | ID: covidwho-741388

ABSTRACT

Pandemic SARS-CoV-2 infection has rapidly developed into a socioeconomic and humanitarian catastrophe. Basic principles to prevent SARS-CoV-2 transmission are social distancing, face masks, contact tracing and early detection of SARS-CoV-2. To meet these requirements, virtually unlimited test capacities delivering results in a rapid and reliable manner are a prerequisite. Here, we provide and validate such a rapid, convenient and efficient kit-independent detection of SARS-CoV-2 RNA, termed COVID-quick-DET. This straightforward method operates with simple proteinase K treatment and repetitive heating steps with a sensitivity of 94.6% in head-to-head comparisons with kit-based isolation methods. This result is supported by data obtained from serially diluted SARS-CoV-2 virus stocks. Given its cost- and time-effective operation, COVID-quick-DET might be best suited for countries with general shortage or temporary acute scarcity of resources and equipment.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Reagent Kits, Diagnostic , COVID-19 , COVID-19 Testing , Diagnostic Tests, Routine , Endopeptidase K/chemistry , Heating , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL